
JOURNAL OF APPROXIMATION THEORY 81, 195-206 (1995)

On a Difference Equation for Generalizations
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In this paper we obtain a set of polynomials which are orthogonal with respect
to the classical discrete weight function of the Charlier polynomials at which an
extra point mass at x = 0 is added. We construct a difference operator of infInite
order for which these new discrete orthogonal polynomials are eigenfunctions.
~':, 1995 Academic Press. Inc.

1. INTRODUCTION

In [6] J. Koekoek and R. Koekoek found a differential equation of the
form

OC!

N L aj(x) y(i)(x) + xy"(x) + (ex. + 1 -x) y'(x) + ny(x) = 0
i=O

for the polynomials {L~·N(X)}:~0' which are orthogonal on the interval
[0, (0) with respect to the weight function

1
---x"e-X + Nt5(x)
r(ex.+ 1) ,

ex. > -1, N';:;O.

The coefficients {ex.j(X)};:l are independent of the degree nand ao(x) is
independent of x. When N> 0 this differential equation is of infinite order
in general and for nonnegative integer values of the parameter ex. the order
reduces to 2ex. + 4.

In [7] R. Koekoek also found a similar differential equation for the
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symmetric generalized ultraspherical polynomials {P~,~· M, M (x)} ;~~ 0' which
are orthogonal on the interval [ - 1, 1] with respect to the weight function

T(2Gt+2) 2, " '
2 + 1 { } 2 (l - X ) + M[ J( x + 1) + J(x-I)],

2' T(Gt+l)
Gt> -1, M~O.

For more details concerning these generalized Jacobi polynomials
{P~./J,M.N(X)} ,~~o the reader is referred to [8].

In [4] R. A. Askey posed the problem of finding difference equations of
a similar form for generalizations of discrete orthogonal polynomials which
are orthogonal with respect to the classical weight function together with
an extra point mass at the point x = O.

In this paper we solve this problem for generalizations of the classical
Charlier polynomials.

In fact, we look for difference equations of the form

iX'

N L: Ai(x) L1 iy(x) + xL1 Vy(x) + (a - x) L1y(x) + ny(x) = 0 (l)
;=0

satisfied by the polynomials {C~,N(X)} ,c;~o, which are orthogonal with
respect to the inner product

(J'.:.' e-UaX
<f,g) = L -,~f(x)g(x)+Nf(O)g(O),

x~o x.
a>O, N~O.

In this paper we give a constructive method for obtaining the coefficients
{A;(x)};:o in the difference equation (1) and we show that if N>O the
order of this difference equation turns out to be infinite for all values of the
parameter a > O.

In [3] the similar problem for generalizations of the Meixner polyno­
mials is treated.

In [I] R Bavinck introduced Sobolev-type generalizations of the
Charlier polynomials and in [2] it is shown that these are eigenfunctions
of a difference operator of infinite order as well.

2. DEFINITIONS AND NOTATIONS

We will use the following definition of the classical Charlier polynomials:

" (X) (_aj"-k (-a)" (-n, -x I 1)
C~,l/)(X) := L: k ( _ k)1 = --,-2 Fo _ - -, n = 0, 1,2, ....

k~lJ n . n. a

(2)
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This definition is slightly different from the one given in [5] but this one
turns out to be very convenient in this work. For further details concerning
the classical Charlier polynomials, the reader is referred to [5] anyway.

We remark that we have

n = 0, 1,2, ... , (3)

where L~~)(x) denotes the Laguerre polynomial defined by

I nk
I~). " xL" (X).= n! k7:

0
(-nh (a+k+ l),,-k k!,n=O, 1,2, ....

Further, we define the difference operators

Ltf(x) := f(x + I) - f(x)

and

Vf(x) := f(x) - f(x - I).

Then we find

(4)

(5)

We also have

and

Clal(O) = (-a)"
n , 'n.

n = 1,2,3, ....

n = 0, 1,2, ...

(6)

where

c~al(-I)=(-I)"e~, n=0,1,2, ... ,

The classical Charlier polynomials are discrete orthogonal polynomials
which satisfy the orthogonality relation given by

'CfC e-uax a"
" -- Cla)(x) Cia)(x) = - JLim 11 , nl1l'
X~O x. n.

where Jmn denotes the Kronecker delta.

640/81/2-4

a> 0, m, n = 0, I, 2, ...,
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They satisfy a second order difference equation which can be written in
the form

xA V'y(X) + (a - x) Ay(x) + ny(x) = 0, y(x) = C;,al(X).

By using the definition of the difference operators (4) and (5) we may
rewrite this as

ay(x + 1) + (n - a - x) y(x) + xy(x - 1) = 0,

From the generating function

x

e at( 1+ t)' = I C~:J)(x) til
n=O

we easily obtain

y(x) = C;,a\x). (7)

'x-

L C;::)(x)t'" L c~-al(-x)tj=e-at(I+t)'eat(l+t)x=l.

m=O )=0

Hence

k {I"Cla)(x)CI-al/-x)= '
L. ",' k _/Ill. °

I'll =0 . '

This can also be written as

k=O,

k=1,2,3, ....

j < i, i, j = 0, 1, 2, .... (8)

Formula (8) plays an important role in Sections 4 and 5 of this paper.
We will use another elegant formula which can be obtained from the

generating function. We have for arbitrary real p

x

L C;,al(x+p)t"=e-at(l+t)x+/'=(I+t)P I C:::I(X)t"'.
n=O

Hence

11 (P)Clal(X+p)= " Cia) (x)
n Lt k n-k '

k~O

The special case p = - 1 reads

C;;/)(X - I) = L (-I)k C;,a~k(x),

k~O

nl =0

n=O, 1,2, ....

n =0, 1,2, .... (9)
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The special case p = n can be written as

199

n = 0, 1,2, .... ( 10)

3. GENERALIZATIONS OF THE CHARLIER POLYNOMIALS

Let P denote the space of all real polynomials with real coefficients. In
this section we will determine a set of polynomials which are orthogonal
with respect to the inner product

'x' e-liaX
<f, g> = L -.,-f(x) g(x) + Nf(O) g(O),

x=o x.
a > 0, N> 0, and f, g E P.

(11 )

If we denote this set of polynomials by {C:~' N( x)} 1~= 0' where degree
[C~""'(x)J =n, then we will show that coefficients An and Bn can be deter­
mined in such a way that these polynomials can be written in the form

Suppose that n;?; 2 and

p(x) =xq(x) with degree [ q( x) ] ~ n - 2.

Then we easily obtain by using the orthogonality property of the classical
Charlier polynomials

'1.-; e -aaX

<p(x), C~·N(X» =Bn L -.,-xq(x) C~,a)(x-l)
x=o x.

'x' e -aa X

=aBn " --q(x+ 1) C;;il(X) =0.
L. Xlx=o .

Hence, An and Bn must satify for n;?; 1

'x' e -aa X

0=<1 ca.N(x»=B "_-C1a)(x-l)+NA Ca)(O)+NB C 1al(-I)
'11"'. nL..." In 11" "n··

x=o x.

Now we use (9) and the orthogonality property of the classical Charlier
polynomials to obtain
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Hence,
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So we may choose

and

n = 1,2,3, ....

n=0,1,2, ... ,

which leads to the foHowing proposition.

PROPOSITION. The generalized Charlier polynomials {C~· N( x) } ;~~ 0 which
are orthogonal with re.\pect to the inner product (11 ) can be defined by

C~·N(X) = [1 + N( ~ 1)" C;,"l( -1)] C:,"I(X)

- N( -1)" C:,"I(O) C:,")(x - 1), n = 0, 1, 2, .... (12)

Note that we have chosen C;;·N(X) = q;,)(x) = I. Further we remark that
we can write

C;;·N(X) = [I + N( -1 )"-' C;,"2 1( -1)] C~:d(X)

+ N( -1)" C;;d(O) LlC;;')(x - 1),

for n?: 1 since we have

n = I, 2, 3, ....

For convenience we define CI"I, (x) == 0 In the sequel. Now the latter
definition holds for all n E {O, 1, 2, ... }.

4. THE DIFFERENCE EQUATION

We try to find a difference equation of the form (I) for the polynomials
{C~· N( x)} ;:~ 0 found in the preceding section and given by (12), where the
coefficients {A i( x)} :~ I are arbitrary functions of x independent of the
degree n. Since we want the polynomials {C;;· N (x)} I~~ 0 to be eigenfunctions
of a difference operator we assume that Ao(.') does not depend on x.

So we set

y(x) = C~·N(X) = [I + N( -I)" C~,")( -I)] C~:II(X)

- N( -I)" C;,")(O) C::d(x - 1)
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and substitute this in the difference equation (I). Then we find by means
of the form (7) of the difference equation for the classical Charlier polyno­
mials

N[I+N(-I)"C~,a)(-I)] L A;(x)L1;c~a)(X)

;=0

OC'

- N 2( -I)" c~a)(o) L Aj(x) L1jC~,a)(X - I)
;=0

- N( -I)" c~a)(o)[aC~a)(X)+ (n - a - x)

X c~a)(x -1) + xC~,a)(x - 2)] =0.

By using (4), (6), and the difference equation (7) we obtain

Hence

N[ 1+ N( -I)" c~a)( -I)] L A;(x) L1jC~,a)(x)

;=0

00

-N2(-1)"c~al(0)L Aj(x)L1;C~~)(x-l)

;=0

+ N( -I)" C:;)(O)C~,a~I(X - 2) = O.

This formula must be valid for all values of a> 0 and N> O. The left­
hand side is a polynomial in N. So each coefficient of this polynomial has
to be zero. This implies that

OC' OC'

c~a)(_I) L A;(x)L1jC~,a)(x)-c~a)(o) L A;(x)L1;c~al(x-1)=O (13)

and

;=0

x

;=0

L Aj(x) L1jC~,a)(x)+ (-I)" c~al(o)c~a~j(x - 2) = O.
;=0

This can be simplified to

,c/o

L AJx)L1jc~a)(x)=(-1)"-1 c~a)(0)C~,a~I(X-2) (14)
;=0
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and
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I Ai(X)L1iC~:'l(x-I)=(-I)" IC~:I1(-I)C~:111(X-2), (15)
{=o

since C:,"I(O) -:f. °and C~,"l( -I) -:f. 0.
We will show that (14) and (15) have a unique solution for the

coefficients {A i(x) },f~ 0 which gives rise to the following theorem.

THEOREM 1. The generali:::ed Charlier polynomials {C;;· N( x)} ,;~ 0 satisfy
a unique difference equation of the form (I), where

and

Ao(x) := Ao(n, a) = (-I )"-1 C~,'/~ I( -2), n =0, 1,2, ... , (16)

I

= I (-I)kC;_~)(-x+l)
k~l

i = 1,2,3, ....

( 17)

The proof of this theorem can be found in the next section. Here
Formula (8) is important. Formula (8) can be stated in other words as
follows. If we define the matrix T:= (ti);:j~ I (n? I) with entries

._ {C;"li X ),
tu'- 0,

j~ i,

j> i,

then this matrix T is a triangular matrix with determinant I and the inverse
U of this matrix is given by T 1:= U = (Uij)~j~ I with entries

{
C; -11( -x),

uu:= 0,
j~ i,

j> i.

The difference equation given by (I), (16), and (17) is of infinite order
for all values of the parameter a. This can be seen as follows. From (17)
it is clear that degree [A i( x) ] ~ i for all i = I, 2, 3, .... Now we compute the
coefficient hi of Xi in the polynomial Ai(x). By using the definition (2) we
easily see that

I
C")(X) =- x" + lower order terms.

" 11 !
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Hence, from (17) we find for i= I, 2, 3, ... by using (10) and (6)

h=; -I k(_I)i-k[qa)(_I)_ qa)(-2)1
, k~1 ( ) (i-k)! k! k! J

=(-.,1);[ ±(i)qa)(_I)_ ±(i)qa)(_2)1
I. k~O k k~O k J

= ( - Ir [el.a)(i _ I) _ e(a)(i _ 2) ] = ( - I ); era) (i - 2).
i! Iii! 1- I
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This shows that the difference equation given by (I), (16), and (17) is of
infinite order, since we have by using (2) and (3)

or

i = 1,2,3, ...,

e(a) (i - 2) = - _a_ era) (i _ I) = _ _ a_ L (l) (a)
,-I i-I ,-2 i-I ,-2 '

i= 2,3,4, ....

Only when a is a zero of some Laguerre polynomial might one of the
leading coefficients hi be zero (for some value of i), but in that case we have
h; + I "# 0, since two consecutive Laguerre polynomials have interlacing
zeros.

Moreover, the following theorem shows that the infinite order is
unavoidable.

THEOREM 2. Every linear difference equation of the form

'x

N L B;(x) L1 k
i V i

-
k

, .j/(x) + xL1 Vy(x)
i=O

+ (a - x) L1y(x) + ny(x) = 0,

satisfied by the polynomials {e~·N(x)} ;';'~O has infinite order.

Proof From (4), (5), and (6) we easily find that

n = 0, 1,2, ....

This implies, in view of (6), that the leading coefficient of L1 k, v;-kie~,a\X)
is equal to that of L1ie~~I(x). This implies, in view of the relations (14) and
(15), that the leading coefficient of each Bi(x) equals that of each corre­
sponding A;(x). This proves Theorem 2.

Finally we refer to Section 6 for more results concerning the coefficients
{A i( x) },Y~ 1 of the difference equation (I).
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5. PROOF OF THEOREM 1

In this section we will prove that (14) and (15) have a unique solution
for the coefficients {A;(x)} ;:0 with {A;(x)};: 1independent of nand Ao(.x-)
independent of x.

Moreover, we will show that this unique solution is given by (16) and
(17).

Formula (13) can be written as

L A,(x)[ C::il( -I) L/;C~,u\x) - C~,U)(O) L/iC~:il(X -I)] = O.
;=0

Hence

i= I

The right-hand side vanishes for x = 0 and since this must be valid for all
values of n and a> 0 we conclude step by step that Ai(O) = A;(a, 0) = 0 for
all i= I, 2, 3....

Now (16) easily follows from (14) or (15), since C~,u\(O) *0 and
C~,U)( - I) *O.

By using (14), (15), (16), and (6) we obtain

II

;=1

= (-I )"-1 C:~)( -I) C~,U~ t(x -2) - (-1 )11-1 C~,U)(X -I) C~u~ I( -2)

= (_1)11 [C;:li( -I) C;,U)(x - 2) - C;,U)( -2) C;,U)(x - I)].

Now we use Formula (8) to obtain (17).
Finally we show that (14) must have the same solution. Since we have

we find for n ~ 1, by using (6), that

II

I A;(x) L/;C~,U)(x)= I A;(x) L/i+ IC~U)(X - I) + I A,(x) L/;C;,U)(x - I)
i= 1 i= I i= I

n-l n

= L A;(x) L/iC;,a~ l(X - I) + I Ai(x) L/;C;,")(x -1).
i= 1 ;= I
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Since the coefficients {Ai(x)} i': 1 are independent of n it is sufficient to
show that for n ~ 1

(-1 )n-I [c~a21( -1) c~a21(X - 2) - c~a21( -2) C~,a21(X-1)]

+ (-1 r [c~a)( -1) C~,a)(x - 2) - C~,a)( -2) c~al(x -1)]

equals

The proof of this is straightforward and follows by using the fact that

6. SOME REMARKS

We have proved that the polynomials {C~,N(X)}:~o satisfy a unique
difference equation of the form (1) and that the coefficients {A i (x) }~ 0 are
given by (16) and (17), In Section 4 we already showed that this difference
equation is of infinite order since

( _l)i .
Ai(x) = -.-,- C~<J) I(i - 2) Xl + lower order terms,

/,
i = 1, 2, 3, ,...

Some more details about the coefficients can easily be discovered. For
instance, note that the coefficients are both polynomials in x and in a. As
a polynomial in x the coefficient A;(x) usually has degree i. Moreover, if
degree[A;(x)] < i then we have degree[A i + I(X)] = i + L As a polynomial
in a the coefficient A;(x) has degree 2i - 2, Moreover, we have by
straightforward calculations

( -1); x 2; _ 2
A;(x) ='\ . _ 1)' a + lower order terms,

/, (I .
i = 1, 2, 3, ....

The classical Charlier polynomials also satisfy a difference equation of
infinite order. This can be shown as follows. Similar to Formula (9) we
have more general

cx.'

y(x-l)= L (-l)iLliy(x)
;=0
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for polynomials y(x). This implies, by using (4) and (7), that the classical
Charlier polynomials satisfy the infinite order difference equation given by

xL (-I)'J)'(x)+aJy(x)+ny(x)=O,
i= 1

y(x) = C;,a)(x).

So the difference equation (I) for the generalized Charlier polynomials
{ C,,·N(X)} x can also be written in the form

11 II =0

N I Ai(x) Jiy(X) + x I (_I)i "h'(.x) + a Jy(x) + ny(x) = O.
i~(J i~ I
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